The Crystal Structures of Ethylene and Tetrafluoroethylene Complexes of Rhodium(1)

By J. **A. EVANS** and D. R. **RUSSELL***

(Department of Chemistry, Leicester University, Leicester LE1 7RH)

Summary The molecular geometries of acetylacetonatodiethylenerhodium(1) and acetylacetonatoethylenetetrafluoroethylenerhodium(I) show that C_2F_4 is more closely bound to rhodium than C_2H_4 , a consequence of increased π -bonding.

ALTHOUGH the Chatt-Dewar scheme provides a good conceptual description of the bonding of olefins to transition metals, the relative importance of the σ - and π -contributions to the bond is a controversial topic. We have determined the crystal structures of two bis-olefin-rhodium(1) complexes,

FIGURE 1. The molecular structure of $(C_2H_4)_2Rh(C_5H_7O_2)$. *Bondlengths in* Å, *e.s.d.'s of last figure in parentheses*

 $(C_2H_4)_2Rh(\text{acac})$ (1) and $(C_2H_4)(C_2F_4)Rh(\text{acac})$ (2), $[(\text{acac}) =$ acetylacetonato], for in the latter complex it should be possible to make direct comparisons of rhodium-alkene geometry within the same molecule.

The two molecules have similar geometry. As expected the Rh(acac) unit is nearly planar, and the $C=C$ bonds of the two olefin groups are approximately perpendicular to this plane [87.4° in (1), 84.2° and 87.8° for C_2F_4 and C_2H_4 respectively in (2)]. The detailed geometry (Figures **1** and **2)** reveals that in (2) the tetrafluoroethylene carbon atoms are significantly (10σ) closer to the rhodium atom than the ethylene carbon atoms. **A** comparison of the Rh-C distances with those of compound **(1)** (the two ethylene ligands are equivalent in this molecule by a crystallographic mirror plane) suggests that in (2) C_2F_4 is *more* strongly bound, and C2H4 *less* strongly bound, than are the two C_2H_4 groups in the bisethylene complex (1). This trend is in line with the predicted π -acceptor properties of C_2F_4 and C_2H_4 , and the reverse of that predicted for their σ -donor properties. It follows that the π -acceptor properties of olefins dominate in metal-olefin bonding, at least within this system. **A** similar conclusion has been reached by Cramerl from thermodynamic measurements on the substitution of olefins in compound **(l),** and, in the related system $(\pi$ -Cp) Rh(C₂F₄)(C₂H₄) (Cp = cyclopentadienyl), the activation energy to rotation of the ethylene group is

lower than in $(\pi-\text{Cp})\text{Rh}(C_{2}H_{4})_{2}$, and $C_{2}F_{4}$ is not observed to rotate below 110 °C.²

FIGURE 2. The molecular structure of $(C_2H_4)(C_2F_4)Rh(C_5H_7O_2)$ *Bond-lengths in* **A,** *e.s.d.'s of last figure in parentheses.*

The olefin C-C bond lengths should also reflect the changing contributions of the π^* orbital in the metal-olefin bond. Allowing for the errors in these distances, it is unlikely that any of the olefin bond lengths in the two compounds differs by more than $0.03 \text{ Å } (2 \sigma)$ from the mean value of 1.41 Å ; this is surprising in view of the large differences in Rh-C bond-lengths. However, since the C-C bond length in free C_2H_4 (1.336 Å)³ is longer than in C_2F_4 (1.31 Å⁴ or 1.27 Å⁵), the complexed olefin C–C bond lengths observed here are consistent with an increased population of π^* orbitals. Nevertheless, the small differences in olefin C-C bond lengths, coupled with their inevitably higher standard deviations, suggest that the $C = C$ bond length alone is not a good criterion of bond-type; other guides such as metal-carbon distance, or the extent of distortion of the alkene from planarity, are more accurate. Thus, in the structure of acetylacetonatobis(tetramethy1 allene)rhodium(I),⁶ a complex with an "unsymmetrical" olefin, the metal-carbon distances **(2.18** and **2.03** A, the shorter distance involves the more electronegative, originally $s\phi$ hybridised carbon atom) differ by a significantly larger amount than the differences between co-ordinated and "free" C=C bond-lengths within the allene groups.

There is a slight trans-influence evident from the Rh-O distances in (2); the longer bond is *trans* to C_2F_4 and may be associated with the shorter metal-alkene distance. In other respects the co-ordinated C_2F_4 geometry is very similar to that observed in $(Ph_3P)_2(C_2F_4)RhCl.^7$

Both structures were determined by conventional X -ray methods using Stoe Weissenberg diffractometer data. *R* for **(1)** is **0.079 (533** reflexions); for **(2)** *R* is **0.069 (2014** reflexions). We thank the S.R.C. for support.

(Received, December **16th, 1970;** *Corn.* **2176.)**

- R. Crarner, *J. Amer. Chem. Soc.,* **1967,89, 4621.**
-
- R. Cramer, J. B. Kline, and J. D. Roberts, *J. Amer. Chem. Soc.*, 1969, 91, 2519.
L. S. Bartell, E. A. Roth, C. D. Hollowell, K. Kuchitsu, and J. E. Young, *J. Chem. Phys.*, 1965, 42, 2683.
- *I.* **L.** Karle and J. Karle, *J. Chem. Phys.,* **1950, 18, 963.**
-
-
- J. A. Young, *Diss. Abs.*, 1956, 16, 460.
T. G. Hewitt, K. Anzenhofer, and J. J. de Boer, *Chem. Comm.*. 1969, 312.
P. B. Hitchcock, M. McPartlin, and R. Mason, *Chem. Comm.*, 1969, 1367.